The equivalent model of a certain op amp is shown in the figure given below, where $R_1 = 2.8 \text{ M}\Omega$, $R_2 = 39 \Omega$, and $A = 10 \times 10^4$.

References

Section Break Difficulty: Easy

Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the input resistance of the given circuit.

The input resistance of the circuit is $2.8 \pm 2\%$ M Ω .

Explanation:

The input resistance is the Thevenin equivalent resistance seen at the input terminals, that is R_{in} = 2.8 M Ω .

The input resistance of the circuit is 2.8 M Ω .

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Easy	Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the output resistance of the given circuit.

The output resistance of the given circuit is $39 \pm 2\%$ Ω .

Explanation:

The output resistance is the Thevenin equivalent resistance seen at the output terminals, that is $R_{out} = 39 \Omega$.

The output resistance of the given circuit is 39 $\boldsymbol{\Omega}.$

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Easy	Learning Objective: Understand how real operational amplifiers (op amps) function.

The open-loop gain of an op amp is 75000. Calculate the output voltage when there are inputs of +10 μ V on the inverting terminal and +20 μ V on the noninverting terminal.

The output voltage is $750 \pm 2\%$ mV.

Explanation:

The output voltage is calculated as follows: $v_o = Av_d = A(v_2 - v_1) = 75000 \times (20 \ \mu\text{V} - 10 \ \mu\text{V}) = 750 \text{ mV}$

The output voltage is 750 mV.

4.

The output voltage of an op amp is -1 V when the noninverting input is 1 mV. If the open-loop gain of the op amp is 2×10^6 , what is the inverting input?

The inverting input of the op amp is $1.000 \pm 2\%$ mV.

Explanation:

The inverting input of the op amp is calculated as follows: $v_0 = Av_d = A(v_2 - v_1)$ $v_2 - v_1 = \frac{v_0}{A} = \frac{-1}{2 \times 10^8} = -0.50 \mu V$

 $v_2 - v_1 = -0.50 \ \mu V = -0.000 \ m V$ 1 mV - $v_1 = -0.000 \ m V$ $v_1 = 1 \ m V - (-0.000) = 1.000 \ m V$

The inverting input of the op amp is 1.000 mV.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand how real operational amplifiers (op amps) function.

For the op amp circuit given below, the op amp has an open-loop gain of 90000, an input resistance of 14 k Ω , and an output resistance of 115 Ω . Find the voltage gain v_0/v_i using the nonideal model of the op amp.

The voltage gain v_0/v_i of the op amp is 0.999989 ± 2%.

Explanation:

The formula to find the voltage gain is derived as follows:

$$-v_i + Av_d + (R_i + R_0)I = 0$$

But $v_d = R_iI$
$$-v_i + (R_i + R_0 + R_iA)I = 0$$

$$I = \frac{v_i}{R_0 + (1 + A)R_i}$$

$$-Av_d - R_0 I + v_0 = 0$$

$$v_o = Av_d + R_o I = (R_o + R_i A) I = \frac{(R_o + R_i A)v_i}{R_o + (1 + A)R_i}$$

The voltage gain is calculated as follows: $\frac{\nu_o}{\nu_i} = \frac{R_o + R_i A}{R_o + (1 + A)R_i} = \frac{115\Omega + (14 \text{ k}\Omega \times 90000)}{115\Omega + ((1 + 90000) \times 14 \text{ k}\Omega)} = 0.999989$ The voltage gain is 0.999989.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand how real operational amplifiers (op amps) function.

A 741 op amp shown in the circuit given below has an open-loop voltage gain of 80000, an input resistance of 2 M Ω , and an output resistance of 110 Ω . Calculate the output voltage v_0 in the op amp circuit.

The output voltage of the op amp is -0.999988 ± 2% mV.

Explanation:

The formula to find the output voltage is derived as follows:

Then, the output voltage is calculated as follows:

Assignment Print View

$$\nu_{o} = -\left(\frac{R_{o} + R_{i}A}{R_{o} + (1 + A)R_{i}}\right)\nu_{1}$$
$$\nu_{o} = -\left(\frac{110\Omega + (2M\Omega \times 80000)}{110\Omega + (1 + 80000) \times 2M\Omega}\right) \times 1 \text{ mV}$$

The output voltage is - 0.999988 mV.

The op amp in the circuit given below has $R_i = 100 \text{ k}\Omega$, $R_0 = 100 \Omega$, $v_S = 1 \text{ mV}$, and A = 100,000.

References

Section Break

Difficulty: Medium

Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the output voltage v_0 for the given op amp circuit.

The output voltage v_0 for the given op amp circuit is $-0.99 \pm 2\%$ mV.

Explanation:

At node V₁,
$$i_1 - i_2 + i_3 = 0$$
A

$$\frac{v_S - v_1}{100\Omega} - \frac{v_1 - v_0}{100k\Omega} + \frac{-v_1}{R_i} = 0$$
A
which leads to $V_1 = \frac{1000V_S + V_0}{1002}$
At node V₀, $i_2 + i_4 = 0$ A

$$\frac{v_1 - v_0}{100k\Omega} + \frac{AV_d - v_0}{R_o} = 0$$
A
But, $V_d = -V_1$ and $A = 100,000$ so
 $V_1 - V_0 + 1000(-100,000V_1 - V_0) = 0$
 $V_0 = \frac{-99,999,999}{1001}V_1 = \frac{-99,999,999}{1001}[\frac{1000V_S + V_0}{1002}]$
This gives us $\frac{V_0}{V_S} = -990.07$
If V_s = 1 mV, then V₀ = -0.9901 mV

The output voltage v_o for the given op amp circuit is -0.9901 mV.

Hints

<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the differential voltage v_d .

The differential voltage v_d is 9.90 ± 2% nV.

Explanation:

The differential voltage is calculated as follows: $v_0 = Av_d = 100,000 v_d$ Then, $v_d = -\frac{v_o}{10^5} = -\frac{-0.99 \text{ mV}}{10^5} = --9.90 \text{ nV}$.

<u>The</u> differential voltage v_d is -- 9.90 nV.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the output voltage v_o for the given op amp circuit.

The output voltage v_0 for the given op amp circuit is $-0.99 \pm 2\%$ mV.

Explanation:

At node V₁, $i_1 - i_2 + i_3 = 0A$ $\frac{V_S - V_1}{100\Omega} - \frac{V_1 - V_O}{100k\Omega} + \frac{-V_1}{R_i} = 0A$ which leads to $V_1 = \frac{1000V_S + V_O}{1002}$ At node V₀, $i_2 + i_4 = 0A$ $\frac{V_1 - V_O}{100k\Omega} + \frac{AV_d - V_O}{R_o} = 0A$ But, $V_d = -V_1$ and A = 100,000 so $V_1 - V_O + 1000(-100,000V_1 - V_O) = 0$ $V_O = \frac{-99,999,999}{1001}V_1 = \frac{-99,999,999}{1001}[\frac{1000V_S + V_O}{1002}]$ This gives us $\frac{V_O}{V_S} = -990.07$ If V_s = 1 mV, then V_o = -0.9901 mV

The output voltage v_0 for the given op amp circuit is -0.9901 mV.

Hints

<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the differential voltage v_d .

The differential voltage v_d is 9.90 ± 2% nV.

Explanation:

The differential voltage is calculated as follows: $v_0 = Av_d = 100,000 v_d$ Then, $v_d = -\frac{v_o}{10^5} = -\frac{-0.99 \text{ mV}}{10^5} = --9.90 \text{ nV}$.

<u>The</u> differential voltage v_d is -- 9.90 nV.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand how real operational amplifiers (op amps) function.

Calculate the output voltage v_o for the op amp circuit given below, where l = 1 mA and R = 3 k Ω . (Assume ideal op amp)

The output voltage v_0 for the given op amp circuit is $-3.0 \pm 2\%$ V.

Explanation:

If v_a and v_b are the voltages at the inverting terminal and noninverting terminals of the op amp, $v_a = v_b = 0$ $1 \text{ mA} = \frac{v - v_o}{3 \text{ k}\Omega}$

 $v_0 = -3.00 \text{ V}$

The output voltage v_o for the given op amp circuit is - 3.00 V.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Easy	Learning Objective: Understand that ideal op amps function nearly identical to real ones and that they can be used to effectively model them in a variety of circuit applications.

Calculate the output voltage of the op amp circuit given below, where $v_1 = 2.3$ V and $v_2 = 1.5$ V.

The output voltage of the op amp circuit is $-0.8 \pm 2\%$ V.

Explanation:

The output voltage is calculated as follows: Since $v_a = v_b = 1.5$ V and $i_a = 0$, no current flows through the 10-k Ω resistance. Using the compensatory circuit concept, from the given figure we get, $-v_a + 2.3 + v_o = 0$. $v_o = v_a - 2.3 = 1.5$ V - 2.3 V = -0.8 V

The output voltage of the op amp circuit is - 0.8 V.

Find the output voltage v_0 for the op amp circuit given below, where V = 11 V.

The output voltage v_0 for the given op amp circuit is $9 \pm 2\%$ V.

Explanation:

Let v_a and v_b be respectively the voltages at the inverting and the noninverting terminals of the op amp.

 $v_{a} = v_{b} = 11 \text{ V}$ At the inverting terminal, $1 \text{ mA} = \frac{11 \text{ V} - v_{o}}{2 \text{ k}\Omega}$

 $v_o = 9 V$

The output voltage v_o for the given op amp circuit is 9 V.

Find the voltage gain v_0/v_s of the circuit given below, where $R_1 = 17 \text{ k}\Omega$ and $R_2 = 14 \text{ k}\Omega$.

The voltage gain v_0/v_s of the circuit is 2.21 ± 2%.

Explanation:

Since no current enters the op amp, the voltage at the input of the op amp is v_s . Hence,

$$v_s = v_o \left(\frac{14 \, \mathrm{k}\Omega}{17 \, \mathrm{k}\Omega + 14 \, \mathrm{k}\Omega} \right)$$
$$\frac{v_o}{v_s} = 2.21$$

The gain v_0/v_s of the circuit is 2.21.

Calculate the voltage ratio v_0/v_s for the op amp circuit given below, where $R = 11 \text{ k}\Omega$. Assume that the op amp is ideal.

The voltage ratio v_0/v_s for the op amp circuit is $-2.27 \pm 2\%$.

Explanation:

Step 1: Label the unknown nodes in the op amp circuit. Next we write the node equations and then apply the constraint $v_a = v_b$. Finally, solve for v_o in terms of v_s .

The voltage ratio v_0/v_s is - 2.27.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand that ideal op amps function nearly identical to real ones and that they can be used to effectively model them in a variety of circuit applications.

Consider the op amp circuit given below, where R_1 = 19 k Ω and v_s = 1 V.

References

Section Break

Difficulty: Medium

Learning Objective: Understand that ideal op amps function nearly identical to real ones and that they can be used to effectively model them in a variety of circuit applications.

Calculate the output voltage v_0 for the given circuit.

The output voltage v_0 is $2.48 \pm 2\%$ V.

Explanation:

By voltage division,

$$v_a = \frac{90 \text{ k}\Omega}{90 \text{ k}\Omega + 19 \text{ k}\Omega} \times 1 \text{ V} = 0.83 \text{ V}$$

 $v_b = \frac{50 \text{ k}\Omega}{50 \text{ k}\Omega + 100 \text{ k}\Omega} = \frac{v_o}{3}$
But $v_a = v_b \rightarrow \frac{v_o}{3} = 0.83 \text{ V}$

The output voltage v_o is 2.48 V.

Hints Hint #1 References Worksheet Difficulty: Medium Learning Objective: Understand that ideal

orksheet	Difficulty: Medium	Learning Objective: Understand that ideal
		op amps function nearly identical to real
		ones and that they can be used to
		effectively model them in a variety of
		circuit applications.

Calculate the output current in the circuit.

The output current in the circuit is $264.22 \pm 2\%$ μ A.

Explanation:

The output current is calculated as follows: $i_o = i_1 + i_2 = \frac{\nu_0}{10 \text{ k}\Omega} + \frac{\nu_0}{50 \text{ k}\Omega + 100 \text{ k}\Omega} = \frac{2.48 \text{ V}}{10 \text{ k}\Omega} + \frac{2.48 \text{ V}}{50 \text{ k}\Omega + 100 \text{ k}\Omega} = 264.22 \mu\text{A}$

The output current in the circuit is 264.22 μ A.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand that ideal op amps function nearly identical to real ones and that they can be used to effectively model them in a variety of circuit applications.

Determine the output voltage v_o in the op amp circuit given below, where l = 7 mA. 10 kΩ

Explanation:

The transformation of a current source to a voltage source is shown below, where $v_{\rm S}$ = 35 V.

From (1) and (2), $140 = -14v_o - 2v_o$

*v*_o = - 8.75 V

The output voltage is - 8.75 V.

Hints		
<u>Hint #1</u>		
References		
Worksheet	Difficulty: Medium	Learning Objective: Understand that ideal op amps function nearly identical to real ones and that they can be used to effectively model them in a variety of circuit applications.

In the circuit given below, $R_1 = 20 \text{ k}\Omega$, $R_2 = 66 \text{ k}\Omega$, and $R_3 = 2 \text{ M}\Omega$. Calculate the gain $\frac{\nu_0}{\nu_i}$ when the switch is in position 1, position 2, and position 3.

Explanation:

The gain is calculated as follows: Position 1: $G = \frac{v_0}{v_i} = -\frac{K_f}{K_i} = -\frac{20 \text{ k}\Omega}{5 \text{ k}\Omega} = -4.0$ Position 2: $G = \frac{v_0}{v_i} = -\frac{66 \text{ k}\Omega}{5 \text{ k}\Omega} = -13.2$ Position 3: $G = \frac{v_0}{v_i} = -\frac{2 \text{ M}\Omega}{5 \text{ k}\Omega} = -400$ The gain $\frac{v_0}{v_i}$ at the position 1 is - 4.0. The gain $\frac{v_0}{v_i}$ at the position 2 is - 13.2. The gain $\frac{v_0}{v_i}$ at the position 3 is - 400.

Hints

<u>Hint #1</u>

Assignment Print View

Worksheet	Difficulty: Medium	Learning Objective: Understand how the
	-	basic inverting op amp is the workhorse of
		the op amp family.

In the circuit given below, find k in the voltage transfer function $v_0 = kv_s$.

$$O k = \left[\left(\frac{1}{R_1} - \frac{1}{R_2} - \frac{1}{R_F} \right) \left(\frac{R_3}{R_3 + R_4} \right) + \frac{1}{R_2} \right]$$

$$O k = R_f \left(\left(\frac{R_3}{R_1} + \frac{R_3}{R_f} + \frac{R_4}{R_2} \right) \left(\frac{R_3}{R_3 + R_4} \right) - \frac{1}{R_1} \right)$$

$$O k = R_f \left(\left(\frac{R_3}{R_1} - \frac{R_3}{R_f} + \frac{R_4}{R_2} \right) \left(\frac{R_3 + R_4}{R_3} \right) + \frac{1}{R_2} \right)$$

$$\Rightarrow O k = R_F \left[\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_F} \right) \left(\frac{R_3}{R_3 + R_4} \right) - \frac{1}{R_2} \right]$$

From the figure, $v_1 = v_2$. Node 1 is the inverting input and node 2 is the non-inverting input. Applying KCL at node 1 gives $\frac{v_2 - v_1}{R_F} = \frac{v_1 - v_3}{R_2} + \frac{v_1}{R_1}$ ------(1)

Applying KCL at node 2 gives

$$\frac{v_1 - v_2}{R_3} + \frac{v_s - v_2}{R_4} = 0 \quad \Rightarrow \quad v_1 = \frac{R_3}{R_3 + R_4} v_s \quad \dots \quad (2)$$

Substituting (2) into (1) yields

$$\frac{v_o}{R_F} = v_1 \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_F}\right) - \frac{v_s}{R_2}$$

Therefore, $\begin{array}{l} \stackrel{\nu_0}{\nu_s} = \\ k = R_F \Big[\Big(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_F} \Big) \Big(\frac{R_3}{R_3 + R_4} \Big) - \frac{1}{R_2} \Big] \\ \\ \text{The expression for} \quad k = R_F \Big[\Big(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_F} \Big) \Big(\frac{R_3}{R_3 + R_4} \Big) - \frac{1}{R_2} \Big] \end{array}$

Hints

Assignment Finit view			
<u>Hint #1</u>			
<u>Hint #2</u>			
References			
Multiple Choice	Difficulty: Medium	Learning Objective: Understand how the basic noninverting op amp works and how they can be analyzed in electrical circuit applications.	